from PIL import Image

class WatermarkEmbedder:
def __init__(self, alpha=0.1):
self.alpha = alpha # 水印強度因子

def embed_watermark(self, image, watermark):
# 轉(zhuǎn)換圖像到頻域
img_freq = np.fft.fft2(image)

# 水印調(diào)制
watermark_scaled = watermark * self.alpha
marked_freq = img_freq + watermark_scaled

# 逆變換回空域
marked_image = np.real(np.fft.ifft2(marked_freq))
return np.clip(marked_image, 0, 255).astype(np.uint8)

def generate_watermark(self, shape):
# 生成偽隨機水印
return np.random.normal(0, 1, shape)

def main():
# 加載原始圖像
image = np.array(Image.open('original.png').convert('L'))

# 初始化水印嵌入器
embedder = WatermarkEmbedder()

# 生成并嵌入水印
watermark = embedder.generate_watermark(image.shape)
marked_image = embedder.embed_watermark(image, watermark)

# 保存結(jié)果
Image.fromarray(marked_image).save('watermarked.png')

2. 篡改檢測網(wǎng)絡(luò)模型

import torch
import torch.nn as nn

class TamperDetector(nn.Module):
def __init__(self):
super(TamperDetector, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2)
)

self.classifier = nn.Sequential(
nn.Linear(128 * 56 * 56, 1024),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(1024, 2)
)

def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x

def train_detector(model, train_loader, epochs=10):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())

for epoch in range(epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

實踐應(yīng)用

在實際應(yīng)用中,我們需要考慮以下關(guān)鍵因素:

  1. 水印強度與圖像質(zhì)量的平衡
  1. 檢測模型的魯棒性
def evaluate_robustness(model, test_images, transformations):
results = []
for transform in transformations:
modified_images = apply_transform(test_images, transform)
accuracy = test_model(model, modified_images)
results.append((transform, accuracy))
return results

性能優(yōu)化

  1. 計算效率優(yōu)化
# 使用GPU加速
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# 批處理優(yōu)化
def process_batch(images, batch_size=32):
results = []
for i in range(0, len(images), batch_size):
batch = images[i:i+batch_size]
with torch.no_grad():
output = model(batch.to(device))
results.extend(output.cpu().numpy())
return np.array(results)
  1. 內(nèi)存優(yōu)化

未來展望

隨著AI技術(shù)的發(fā)展,數(shù)字水印和篡改檢測技術(shù)將面臨新的機遇和挑戰(zhàn):

  1. 自適應(yīng)水印
  1. 深度學習增強
  1. 實時處理能力

在實際應(yīng)用中,建議采用多層防護策略,結(jié)合傳統(tǒng)數(shù)字水印和現(xiàn)代AI技術(shù),構(gòu)建更可靠的圖像防偽體系。

同時,持續(xù)關(guān)注新型攻擊手段的發(fā)展,及時更新防護措施,確保系統(tǒng)的安全性和可靠性。

文章轉(zhuǎn)自微信公眾號@善士夜讀

上一篇:

AI+前端-實現(xiàn)圖片識別功能

下一篇:

一文讀懂向量數(shù)據(jù)庫
#你可能也喜歡這些API文章!

我們有何不同?

API服務(wù)商零注冊

多API并行試用

數(shù)據(jù)驅(qū)動選型,提升決策效率

查看全部API→
??

熱門場景實測,選對API

#AI文本生成大模型API

對比大模型API的內(nèi)容創(chuàng)意新穎性、情感共鳴力、商業(yè)轉(zhuǎn)化潛力

25個渠道
一鍵對比試用API 限時免費

#AI深度推理大模型API

對比大模型API的邏輯推理準確性、分析深度、可視化建議合理性

10個渠道
一鍵對比試用API 限時免費